
Hidden Markov Model Documentation
Release 0.3

Rahul Ramesh

Aug 22, 2017

Table of Contents

1 Introduction 3
1.1 Installation . 3
1.2 Requirements . 3

2 Tutorial 5
2.1 Introduction . 5
2.2 Basic Definitions . 5
2.3 Forward/Backward Probability . 6
2.4 Forward Algorithm . 6
2.5 Viterbi Algorithm . 6
2.6 Forward-Backward Algorithm . 6
2.7 See Also . 6

3 Usage 7
3.1 Initialization . 7
3.2 Viterbi Algorithm . 8
3.3 Forward Algorithm . 8
3.4 Baum-Welch Algorithm . 9
3.5 Log-Probability Forward algorithm . 10

4 Example 11
4.1 Parameter Intialization . 11
4.2 Forward Algorithm . 12
4.3 Viterbi Algorithm . 12
4.4 Baum-welch Algorithm . 12

Python Module Index 15

i

ii

Hidden Markov Model Documentation, Release 0.3

Contents:

Table of Contents 1

Hidden Markov Model Documentation, Release 0.3

2 Table of Contents

CHAPTER 1

Introduction

This package is an implementation of Viterbi Algorithm, Forward algorithm and the Baum Welch Algorithm. The
computations are done via matrices to improve the algorithm runtime. Package hidden_markov is tested with Python
version 2.7 and Python version 3.5.

Installation

To install this package, clone this repo and from the root directory run:

$ python setup.py install

An alternative way to install the package hidden_markov, is to use pip or easy_install, i.e. run the command:

$ pip install hidden_markov

Unfamiliar with pip? Checkout this link to install pip.

Requirements

• numpy

3

https://github.com/Red-devilz/hidden_markov
https://pip.pypa.io/en/stable/installing/
http://www.numpy.org/

Hidden Markov Model Documentation, Release 0.3

4 Chapter 1. Introduction

CHAPTER 2

Tutorial

Introduction

A Hidden Markov model is a Markov chain for which the states are not explicitly observable .We instead make
indirect observations about the state by events which result from those hidden states .Since these observables are
not sufficient/complete to describe the state, we associate a probability with each of the observable coming from a
particular state . In other words, if the probability falls to either 1 or 0,it reduces to a Markov model.

1st order Markov assumption :The probability of occurrence of an event at time ‘t’ depends only on the observation
at time ‘t-1’ and not on the events that happened before ‘t-1’. In other words, the observations O1,O2,...Ot-1 do not
impact the observation Ot. Hidden Markov models work on this assumption.The initial probability array, transition
array and observation/emission array can completely define a HMM.

Basic Definitions

• O : { O1, O2 , OT } : Sequence of observations

• Q : {Q1 , Q2 , QT } : Sequence of corresponding hidden states

• S : {S1 , S2, , Sn } : Set of unique states in the Hidden Markov model

• M : {M1 , M2, , Mn } : Set of unique observations in the Hidden Markov model

• n : Number of hidden states in the model

• m : Number of unique observations in the model

• T : Transition matrix

• E : Emission matrix

• Pi: Initial/ Start probability

• Alpha : Forward probability values

• Beta : backward probability values

5

Hidden Markov Model Documentation, Release 0.3

Forward/Backward Probability

Given an observation sequence O={O1 , O2,.... OT}, the forward probability Alpha[i,t] is the probability for the
sequence O0, O1,...,Ot to end in the state S[i] after ‘t’ stages or at time ‘t’.

Alpha(i) = P(Qt= Si , O1, O2,...,OT)

Given an observation sequence O={O0 , O1,.... OT}, the backward probability Beta(i) for a state Siat time t is the
probability for the sequence Ot+1, Ot+2,...,Ot is observed given the state is Si at time ‘t’.

Beta(i) = P(Ot+1, Ot+2,...,OT | Qt= Si)

Forward Algorithm

The forward algorithm gives us the probability of an observed sequence in the HMM. So why do we need to find the
probability of an observed sequence? This type of problem occurs in speech recognition where a large number of
Markov models are used, and each one modelling a particular word. Each utterance of a word, will now give us a set
of observation variables.

Hence we will use the Markov model that has the highest probability of this observation sequence. The Forward
algorithm is also an important sub-routine of the forward-backward algorithm. The algorithm works by calculating
Alpha over various ‘t’. The sum of alpha for all states for time = ‘T’

Viterbi Algorithm

Viterbi algorithm is used to find out the most likely sequence of hidden states that can generate the given set of
observations. For example, in speech recognition, the acoustic signal is treated as the observed sequence of events,
and a string of text is considered to be the “hidden cause” of the acoustic signal. The Viterbi algorithm finds the most
likely string of text given the acoustic signal.

So, what we essentially do is in each step of algorithm, we calculate the probabilities of landing up in another state
from any present state. We compare transition probabilities between states. We choose whichever is higher and move
on.

Forward-Backward Algorithm

The third and probably the most important of the three algorithms is the forward backward algorithm. Often, the
emission, transition and start probabilities are not known. This algorithms aims to find the best model parameters
based on the principles of expectation maximization. The algorithm works iteratively and in each iteration, the model
parameters are updated, such that the probability of occurrence of a set of observations increase.

See Also

Check this link to view the more detailed tutorial.

6 Chapter 2. Tutorial

https://drive.google.com/file/d/0B51S7y4fFTS2bnNLcnllc1dpdVE/view?usp=sharing

CHAPTER 3

Usage

Initialization

class hidden_markov.hmm(states, observations, start_prob, trans_prob, em_prob)
Stores a hidden markov model object, and the model parameters.

Implemented Algorithms :

•Viterbi Algorithm

•Forward Algorithm

•Baum-Welch Algorithm

Initialize The hmm class object.

Arguments:

Parameters

• states (A list or tuple) – The set of hidden states

• observations (A list or tuple) – The set unique of possible observations

• start_prob (Numpy matrix, dimension = [length(states) X 1]) –
The start probabilities of various states, given in same order as ‘states’ variable.
start_prob[i] = probability(start at states[i]).

• trans_prob (Numpy matrix, dimension = [len(states) X
len(states)]) – The transition probabilities, with ordering same as ‘states’
variable . trans_prob[i,j] = probability(states[i] -> states[j]).

• em_prob (Numpy matrix, dimension = [len(states) X
len(observations)]) – The emission probabilities, with ordering same
as ‘states’ variable and ‘observations’ variable. em_prob[i,j] = probabil-
ity(states[i],observations[j]).

Example:

7

Hidden Markov Model Documentation, Release 0.3

>>> states = ('s', 't')
>>> possible_observation = ('A','B')
>>> # Numpy arrays of the data
>>> start_probability = np.matrix('0.5 0.5 ')
>>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
>>> emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')
>>> test = hmm(states,possible_observation,start_probability,transition_
→˓probability,emission_probability)

Viterbi Algorithm

hmm.viterbi(observations)
The probability of occurence of the observation sequence

Arguments:

Parameters observations (A list or tuple) – The observation sequence, where each el-
ement belongs to ‘observations’ variable declared with __init__ object.

Returns Returns a list of hidden states.

Return type list of states

Features:

Scaling applied here. This ensures that no underflow error occurs.

Example:

>>> states = ('s', 't')
>>> possible_observation = ('A','B')
>>> # Numpy arrays of the data
>>> start_probability = np.matrix('0.5 0.5 ')
>>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
>>> emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')
>>> # Initialize class object
>>> test = hmm(states,possible_observation,start_probability,transition_
→˓probability,emission_probability)
>>> observations = ('A', 'B','B','A')
>>> print(test.viterbi(observations))

Forward Algorithm

hmm.forward_algo(observations)
Finds the probability of an observation sequence for given model parameters

Arguments:

Parameters observations (A list or tuple) – The observation sequence, where each el-
ement belongs to ‘observations’ variable declared with __init__ object.

Returns The probability of occurence of the observation sequence

Return type float

Example:

8 Chapter 3. Usage

Hidden Markov Model Documentation, Release 0.3

>>> states = ('s', 't')
>>> possible_observation = ('A','B')
>>> # Numpy arrays of the data
>>> start_probability = np.matrix('0.5 0.5 ')
>>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
>>> emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')
>>> # Initialize class object
>>> test = hmm(states,possible_observation,start_probability,transition_
→˓probability,emission_probability)
>>> observations = ('A', 'B','B','A')
>>> print(test.forward_algo(observations))

Note: No scaling applied here and hence this routine is susceptible to underflow errors. Use hmm.
log_prob() instead.

Baum-Welch Algorithm

hmm.train_hmm(observation_list, iterations, quantities)
Runs the Baum Welch Algorithm and finds the new model parameters

Arguments:

Parameters

• observation_list (Contains a list multiple observation
sequences.) – A nested list, or a list of lists

• iterations (An integer) – Maximum number of iterations for the algorithm

• quantities (A list of integers) – Number of times, each corresponding item
in ‘observation_list’ occurs.

Returns Returns the emission, transition and start probabilites as numpy matrices

Return type Three numpy matices

Features:

Scaling applied here. This ensures that no underflow error occurs.

Example:

>>> states = ('s', 't')
>>> possible_observation = ('A','B')
>>> # Numpy arrays of the data
>>> start_probability = np.matrix('0.5 0.5 ')
>>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
>>> emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')
>>> # Initialize class object
>>> test = hmm(states,possible_observation,start_probability,transition_
→˓probability,emission_probability)
>>>
>>> observations = ('A', 'B','B','A')
>>> obs4 = ('B', 'A','B')
>>> observation_tuple = []
>>> observation_tuple.extend([observations,obs4])
>>> quantities_observations = [10, 20]

3.4. Baum-Welch Algorithm 9

Hidden Markov Model Documentation, Release 0.3

>>> num_iter=1000
>>> e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations)
>>> # e,t,s contain new emission transition and start probabilities

Log-Probability Forward algorithm

hmm.log_prob(observations_list, quantities)
Finds Weighted log probability of a list of observation sequences

Arguments:

Parameters

• observation_list (Contains a list multiple observation
sequences.) – A nested list, or a list of lists

• quantities (A list of integers) – Number of times, each corresponding item
in ‘observation_list’ occurs.

Returns Weighted log probability of multiple observations.

Return type float

Features:

Scaling applied here. This ensures that no underflow error occurs.

Example:

>>> states = ('s', 't')
>>> possible_observation = ('A','B')
>>> # Numpy arrays of the data
>>> start_probability = np.matrix('0.5 0.5 ')
>>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
>>> emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')
>>> # Initialize class object
>>> test = hmm(states,possible_observation,start_probability,transition_
→˓probability,emission_probability)
>>> observations = ('A', 'B','B','A')
>>> obs4 = ('B', 'A','B')
>>> observation_tuple = []
>>> observation_tuple.extend([observations,obs4])
>>> quantities_observations = [10, 20]
>>>
>>> prob = test.log_prob(observation_tuple, quantities_observations)

10 Chapter 3. Usage

CHAPTER 4

Example

This notebook illustrates the usage of the functions in this package, for a discrete hidden markov model. In the
example below, the HMM has two states ‘s’ and ‘t’. There are two possible observation which are ‘A’ and ‘B’. The
start probabilities, emission probabilities and transition probabilities are initialized as below. There are two observation
sequences ‘obs1’ and ‘obs2’. The variable ‘quantities_observations’ indicates the number of times, the sequences obs1
and obs2 are seen.

Import required Libraries
import numpy as np
from hidden_markov import hmm

Parameter Intialization

====Initializing Parameters ====

States
states = ('s', 't')

list of possible observations
possible_observation = ('A','B')

The observations that we observe and feed to the model
obs1 = ('A', 'B','B','A')
obs2 = ('B', 'A','B')

Number of observation sequece 1 and observation sequence 2
quantities_observations = [10, 20]

observation_tuple = []
observation_tuple.extend([obs1,obs2])

Input parameters as Numpy matrices
start_probability = np.matrix('0.5 0.5 ')

11

Hidden Markov Model Documentation, Release 0.3

transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ')
emission_probability = np.matrix('0.3 0.7 ; 0.4 0.6 ')

A class object called ‘test’ is initialized with parameters. Note that the parameters are mandatory and default arguments
do not exist. Additionally, the start probabilities, transition probabilities and emission probabilites are all numpy
matrices. The observations and states are both tuples and the observation_tuples variable is a list of observations.

test = hmm(states,possible_observation,start_probability,transition_probability,
→˓emission_probability)

Forward Algorithm

The forward algorithm find the probability of occurence of an observation sequence. The function inputs an observa-
tion sequence and returns the probability. The transition, start and emission probabilities used, are the same as those
specified in the class object definition.

#Forward Algorithm Results on 'obs1'
test.forward_algo(obs1)

0.051533999999999996

Viterbi Algorithm

The Viterbi algorithm finds the most probable sequence of states for a given sequence of observations. The function
inputs an observation sequence and returns the most probable sequence of states.

#Output of the Viterbi algorithm
test.viterbi(obs1)

['t', 't', 't', 't']

Baum-welch Algorithm

Using the principles of expectation maximization, the Baum-algorithm finds the emission, start and transition proba-
bilities that represent a list of observation sequences. We use log-probability in order to prevent an overflow error. The
function inputs as parameters, a set of observation sequences, the number of times each observation sequence occurs
and the number of iterations. The function then returns the final emission, start and transition probabilities.

prob = test.log_prob(observation_tuple, quantities_observations)
print ("probability of sequence with original parameters : %f"%(prob))

probability of sequence with original parameters : -67.920122

#Sequence on which Baum welch algoritm aws applide on
print(observation_tuple)
print(quantities_observations)

12 Chapter 4. Example

Hidden Markov Model Documentation, Release 0.3

[('A', 'B', 'B', 'A'), ('B', 'A', 'B')]
[10, 20]

#Apply Baum-welch Algorithm
num_iter=1000
emission,transition,start = test.train_hmm(observation_tuple,num_iter,quantities_
→˓observations)

#Print output after applying the algorithm
print(emission)

[[0.36193015 0.63806985]
[0.41111482 0.58888518]]

print(start)

[[0.49431308 0.50568692]]

print(transition)

[[0.58184591 0.41815409]
[0.29789921 0.70210079]]

Notice that the probability of occurence of an observation sequence has increased for the new model parameters

prob = test.log_prob(observation_tuple, quantities_observations)
print ("probability of sequence after %d iterations : %f"%(num_iter,prob))

probability of sequence after 1000 iterations : -67.356668

4.4. Baum-welch Algorithm 13

Hidden Markov Model Documentation, Release 0.3

14 Chapter 4. Example

Python Module Index

h
hidden_markov, 6

15

Hidden Markov Model Documentation, Release 0.3

16 Python Module Index

Index

F
forward_algo() (hidden_markov.hmm method), 8

H
hidden_markov (module), 6
hmm (class in hidden_markov), 7

L
log_prob() (hidden_markov.hmm method), 10

T
train_hmm() (hidden_markov.hmm method), 9

V
viterbi() (hidden_markov.hmm method), 8

17

	Introduction
	Installation
	Requirements

	Tutorial
	Introduction
	Basic Definitions
	Forward/Backward Probability
	Forward Algorithm
	Viterbi Algorithm
	Forward-Backward Algorithm
	See Also

	Usage
	Initialization
	Viterbi Algorithm
	Forward Algorithm
	Baum-Welch Algorithm
	Log-Probability Forward algorithm

	Example
	Parameter Intialization
	Forward Algorithm
	Viterbi Algorithm
	Baum-welch Algorithm

	Python Module Index

